[ 科学技術・大学 ]

革新の系譜・日本の科学技術力/ネオジム磁石−EV・ロボの実用化に貢献

(2016/9/20 05:00)

ネオジム磁石は史上最強の永久磁石だ。NDFEB(京都市西京区)の佐川眞人社長が1982年に発明して以来、30年以上首位の座を守る。モーターの効率を飛躍的に高め、電気自動車(EV)やロボットなどの実用化につながった。特に車載モーター用の高性能磁石は日本企業が独占してきた。だが基本特許が切れており、“ポストネオジム磁石”の開発が喫緊の課題となる。 (小寺貴之)

■最強磁石、後継者を探せ

【温暖化対策にも】

  • ネオジム磁石㊧とフェライト磁石(物材機構提供)

現在、世界の電気エネルギーの55%はモーターが消費している。モーターの性能は磁石に依存しており、磁力が向上するとモーターの出力向上や小型化、高効率化につながる。磁石は地球規模のエネルギー問題に貢献する研究テーマといえる。

希土類磁石は機械装置の駆動系を一変した。東京工業大学の鈴森康一教授は「80年以前のロボットはすべて油圧駆動。希土類磁石の登場でモーター駆動に置き換わった」と振り返る。ネオジム磁石はHDDの読み出し装置など情報化の波を支え、EVやハイブリッド車(HV)を実現し、温暖化対策にも寄与した。この発明のきっかけは78年にまでさかのぼる。当時、佐川社長は富士通研究所で特殊スイッチの開発を担当し、サマリウムコバルト(SmCo)磁石の研究を任されていた。ある希土類磁石のシンポジウムで、希土類と鉄の組み合わせがなぜ磁石にならないか、簡単な考察が紹介された。内容は鉄原子の距離が近すぎて磁性が不安定になるという解釈だ。

佐川社長は「ならば原子間距離を広げれば良い。炭素やホウ素を添加してみよう」と発想した。このアイデアが大当たりした。

【10万トンに迫る】

  • ネオジム磁石を持つ佐川氏

鉄は資源量が豊富で原価を抑えられるため、希土類鉄系磁石の研究は熱心に取り組まれた。SmCo磁石のコバルトを鉄で置き換える実験が繰り返されたが、鉄の割合を増やすと磁力が急減した。佐川社長は「当時は鉄系は磁石にならないというのが常識だった」という。そこで希土類と鉄にホウ素や炭素を組み合わせ、材料を探した。希土類にネオジムを選んだところ、性能が向上し、磁石になる可能性が見えてきた。

ただ当時の富士通研ではネオジム磁石の研究継続が難しかった。特殊スイッチ用のSmCo磁石の開発が終わるとテーマが変更された。「電子機器メーカーでは通説を覆すような新しい磁石の開発は難しかった。上司は系列会社に打診してくれたが、話がまとまらなかった」と振り返る。

そこで82年に住友特殊金属(現日立金属)に転職した。新天地でネオジム磁石を完成させ、入社3年目には量産が始まった。

住友特殊金属が社外にライセンス提供を認めたため、電子部品や車載モーター、風力発電機などネオジム磁石の用途が広がった。2000年には世界の年間生産量が1万トンを超え、現在は10万トンに迫ろうとしている。

【レアアース削減】

目下の研究課題は希土類(レアアース)の削減だ。11年のレアアースショックでは、中国の実質的な禁輸措置などにより、ジスプロシウムの価格が約100倍まで高騰した。ジスプロシウムはネオジム磁石に耐熱性を持たせるために添加する。180度Cで利用される車載モーター用の磁石では、ジスプロシウムが10%を占めていた。

政府は国を挙げて脱レアアース戦略を推進。新エネルギー・産業技術総合開発機構(NEDO)は、次世代自動車向け高効率モーター用磁性材料技術開発事業で佐川社長らとジスプロシウムを使わない耐熱性磁石の開発を進めている。一般に磁石は結晶を微細化すると磁力が向上する。そこでジェットミルなどで材料を微粉化し、焼き固めて磁石とする。

愛知製鋼はHDDR法という水素の吸着脱離反応を利用したプロセスを開発。磁性の方向をそろえたまま、結晶の微細化に成功した。ともにネオジム磁石の製造プロセスの改良で1・5倍の磁性と耐熱性を目指す。

【ポストネオジム】

  • ネオジム磁石はEVの実用化にもつながった(日産自動車のリーフ)

最大の課題はポストネオジム磁石だ。ネオジム磁石の基本特許はすでに切れ、周辺技術の特許で市場を守っている。30年間、新材料が研究されてきたが、ことごとくネオジム磁石にはね返されてきた。現在、有望視されているのは1―12系と呼ばれる希土類磁石と鉄ニッケル系の磁石だ。

1―12系は希土類元素1に対し、鉄を12混ぜる。物質・材料研究機構が発見し、世界に研究が広がった。物材機構元素戦略磁性材料研究拠点の広沢哲代表研究者は、「鉄の多い組成が研究トレンドになった」という。NEDOの開発事業では、トヨタ自動車と静岡理工科大学の小林久理真教授が、サマリウムと鉄にジルコニウムとコバルト、チタンを混ぜて安定した結晶を作ることに成功した。

鉄ニッケル系は隕石(いんせき)の結晶構造を利用する。隕石は数十億年かけて無重力の真空中で結晶が成長する。これを工業的に再現する。デンソーは窒化脱窒化法という製造法を開発。東北大学の牧野彰宏教授らは、アモルファスから微細結晶を作る方法を開発し、数十億年を300時間に短縮した。NEDOの佐光武文プロジェクトマネージャーは「隕石磁石が実現すれば希土類の供給リスクから解放される」と期待する。(随時掲載)

(2016/9/20 05:00)

関連リンク

科学技術・大学のニュース一覧

おすすめコンテンツ

「現場のプロ」×「DXリーダー」を育てる 決定版 学び直しのカイゼン全書

「現場のプロ」×「DXリーダー」を育てる 決定版 学び直しのカイゼン全書

2025年度版 技術士第二次試験「建設部門」<必須科目>論文対策キーワード

2025年度版 技術士第二次試験「建設部門」<必須科目>論文対策キーワード

技術士第二次試験「総合技術監理部門」択一式問題150選&論文試験対策 第3版

技術士第二次試験「総合技術監理部門」択一式問題150選&論文試験対策 第3版

GD&T(幾何公差設計法)活用術

GD&T(幾何公差設計法)活用術

NCプログラムの基礎〜マシニングセンタ編 上巻

NCプログラムの基礎〜マシニングセンタ編 上巻

金属加工シリーズ 研削加工の基礎 上巻

金属加工シリーズ 研削加工の基礎 上巻

Journagram→ Journagramとは

ご存知ですか?記事のご利用について

カレンダーから探す

閲覧ランキング
  • 今日
  • 今週

ソーシャルメディア

電子版からのお知らせ

↓もっと見る

日刊工業新聞社トピックス

セミナースケジュール

イベントスケジュール

もっと見る

PR

おすすめの本・雑誌・DVD

ニュースイッチ

企業リリース Powered by PR TIMES

大規模自然災害時の臨時ID発行はこちら

日刊工業新聞社関連サイト・サービス

マイクリップ機能は会員限定サービスです。

有料購読会員は最大300件の記事を保存することができます。

ログイン